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The motion of solitons is studied in the Toda lattice with a local defect due to a change in coupling constants.
We demonstrate that the generation of the trapped defect mode by the incident soliton is strongly suppressed
under a certain condition. The effect is explained by the fact that, under this condition, the defect mode
vanishes in the linear limit. In the same case, the soliton remains stable, traveling through a periodic array of
defects; otherwise, it decays.
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I. INTRODUCTION AND THE MODEL

The dynamics of nonlinear lattices is a subject of great
interest in its own right, and serves as a basis for modeling a
large number of physical objects, such as crystals, polymer
molecules, arrays of optical waveguides, Bose-Einstein con-
densates �BECs� trapped in deep optical lattices, arrays of
coupled Josephson junctions, etc. �see, e.g., recent review �1�
and topical collection of articles �2��. Many lattice systems
support collective excitations in the form of solitons and
cnoidal waves �as widely adopted in physics literature, using
the word “soliton,” we do not refer to integrable systems�.

The Toda lattice �TL� is a well-known integrable model,
which provides exact solutions for moving solitons in the
lattice �3�. A generalized �inhomogeneous, hence noninte-
grable� TL model is based on the chain equations of motion,
mnün=Fn−Fn+1, where the overdot stands for the time de-
rivative, mn and un are the mass and displacement of the nth
particle, and the interaction forces are

Fn�rn� = an�exp�− bnrn� − 1� , �1�

with an and bn constants of the nth nonlinear spring, and rn
�un−un−1 relative displacements. In terms of rn, the equa-
tions of motion take the form of

mnr̈n = 2Fn − Fn+1 − Fn−1. �2�

In the uniform �integrable� TL, with mn�m, an�a, and bn
�b, rescaling makes it possible to set a=b=m�1 in Eq. �2�,
which we assume below, as concern the uniform part of the
TL in the present model.

Realistic lattice models may also include local imperfec-
tions, viz., impurities, i.e., particles with a different mass,
and spring defects, featuring local variations of constants a
and b. Interaction of solitons with impurities in the TL was
studied by Nakamura and Takeno �4�, and later considered in
other works �5�. Other types of imperfections in the TL were
studied too, including surface defects �6� and interfaces be-
tween two lattices with different parameters �7�. Various ef-

fects generated by the impurities and defects have been re-
ported, such as bounce and fission of incident solitons,
excitation of localized defect modes, etc. The interaction of
lattice solitons with imperfections may play an important
role in specific physical models. In particular, these studies
were recently extended to various defects in photonic/optical
lattices, in the context of BEC and nonlinear optics �8�. Of
special interest is the interaction of gap solitons in fiber
Bragg gratings with attractive defects in the form of a short
fiber segment with suppressed Bragg reflectivity �9�, and
cavities formed by a pair of repulsive defects, created as
short segments with enhanced reflectivity �10�.

In this Brief Report, we consider the scattering of the
lattice soliton on a local defect in the TL described by Eq. �2�
with equal masses, which is accounted for by a variation of
the elastic constants for nonlinear springs linking the pairs of
particles �−1,0� and �0,1�, as shown in Fig. 1,

�a,b�n = 1 + ��a*,b*� − 1���n,0 + �n,1� . �3�

A similar model �with unequal masses� was introduced by
Nakamura �4�, in the cases of strong and weak defects, which
corresponds to a* ,b*�1 and a* ,b*�1, respectively.

Results are reported in the next section. They demonstrate
the existence of a curve in the plane of parameters a* and b*

along which the local defect is “transparent,” i.e., the colli-
sion of the soliton with the defect does not generate a bound
mode. The existence of this curve is explained in terms of the
linearized model. We also consider circulation of the soliton
in a ring-shaped TL with periodic boundary conditions and
an embedded defect, and demonstrate that, under the same
“transparency” condition, the circulating soliton maintains its
shape, while in other cases it decays due to collision-induced
losses.
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FIG. 1. The Toda lattice with the spring defect.
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II. NUMERICAL AND ANALYTICAL RESULTS

To simulate Eq. �2�, we used an explicit Runge-Kutta
method of the ninth order, with an embedded error estimator.
The TL was composed of 400 particles, with periodic bound-
ary conditions. The initial condition was taken as per the
exact soliton in the uniform TL �with a=b=m=1, as said
above�,

rn
�0� = − ln�1 +

sinh2�k0�
cosh2�k0�n − n0��� , �4�

with the center placed at n0=−189. The amplitude of the
unperturbed soliton and its velocity, v=k0

−1 sinh�k0� �we
chose v�0�, are determined by parameter k0. First, we pro-
duce results for a characteristic value of this parameter, k0
=2.3, and then present results for a range of other values of
k0.

The simulations demonstrate that, after the passage of the
soliton through the defect, a small-amplitude trapped mode
emerges, along with transmitted and reflected “radiation”
waves. A typical example is displayed in Fig. 2, by means of

a set of stacked plots for F̃n�Fn /sinh2 �k0� versus n, each
one pertaining to a given moment of time �recall Fn is the
local force defined in Eq. �1��. The fluctuations observed in
the soliton amplitude in Fig. 2 are due to the fact that the

soliton is very narrow, hence its maximum does not neces-
sarily coincide with a lattice site.

The generation of the trapped mode and scattered radia-
tion, as a result of the collision of moving TL solitons with
coupling and mass impurities �both weak and strong ones�,
were already demonstrated in Refs. �4,5�. A feature that our
simulations reveal is that one can find “antiresonant” values
of the defect parameters, at which the generation of the
trapped defect mode, as well as scattered radiation, are
strongly suppressed. For instance, fixing a*=2.0, we find
that the trapped defect mode is generated with a very small
amplitude at b*=0.797, as shown in Fig. 3�a�. Additionally,
Fig. 3�b� shows that parameter values can be found at which
the forward-scattered radiation as well as the trapped defect
mode are strongly reduced �although they do not vanish�,
while backscattering is slightly enhanced. The suppression

effect can also be observed by plotting F̃n versus time at a
fixed lattice site, as shown in Fig. 4.

Systematic analysis demonstrates that, for a given ampli-
tude k0 of incident soliton �4� �i.e., for a fixed velocity of the
soliton�, there is a specific relation between coefficients a*

and b* providing for the strongest suppression of the excita-
tion of the defect mode. In Fig. 5�a�, stacked plots show this
relation, for different values of k0. The numerical data make
it possible to identify the defect-mode-suppression condition
in a sufficiently sharp form, therefore uncertainty in the re-
lation are included in the finite size of the data points.

Point a*=b*=1 corresponds to the strongest suppression,
as in this case there is no defect, therefore all curves in Fig.
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FIG. 2. The scattering of the soliton on the lattice defect with
a*=2.0 and b*=1.4.
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FIG. 3. The scattering of the soliton with k0=2.3 on the local
defect with �a� a*=2.0, b*=0.797, and �b� a*=2.0, b*=0.85. In the
former case, the defect mode is generated with a very small ampli-
tude, while in the latter case it is practically absent, while a con-
spicuous backscattered wave is observed.
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FIG. 4. The lattice perturbation versus time at n=30, for a*

=2.0, and b*=1.4 or b*=0.797 �the full and dashed lines,
respectively�.
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FIG. 5. �Color online� �a� Values of parameters a* and b* at
which the generation of the defect mode is suppressed, for fixed
values of k0, as indicated in the figure. �b� Curves from �a� for k0

=1.6 �squares� and k0=2.7 �triangles�. Hyperbola a*b*=1 is pre-
dicted by the analytical consideration �see text�.
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5 pass through this point. To understand the effect in the
presence of the defect, we use the expansion of Eqs. �2� and
�1�, up to the quadratic terms �taking into regard that mn
�1�,

r̈n = an+1bn+1rn+1 + an−1bn−1rn−1 − 2anbnrn

− �an+1bn+1
2 rn+1

2 /2 + an−1bn−1
2 rn−1

2 /2 − anbn
2rn

2� . �5�

The substitution of expressions �3� in Eq. �5� demonstrates
that, in the linear approximation, which corresponds to the
first line in Eq. �5�, parameters a* and b* appear �in equa-
tions for n=−1,0 ,1, and 2� only in the form of combination
a*b*. Therefore, the defect mode, that should be found from
the linearized version of Eqs. �5�, depends solely on this
combined parameter. Because the defect mode does not exist
for a*=b*=1, it is obvious that the “transparency” line in
parameter plane �a* ,b*�, at which the defect mode does not
exist, amounts to hyperbola a*b*=1. To test this prediction,
in Fig. 5�b� we compare it with actual curves from Fig. 5�a�,
taken for cases of weak and strong nonlinearity �small and
large k0, respectively�. Naturally, the numerical data for the
weaker nonlinearity fall closer to the hyperbola predicted by
the linearization.

The deviation from the hyperbola can be estimated from
the quadratic terms in Eq. �5�. Indeed, the deviation is tan-
gible for a*�1, when the defect’s nonlinearity may be ap-
preciable. In this case, in agreement with Fig. 5�b�, Eq. �5�
predicts that the nonlinearity should shift the “transparency”
curve to larger values of a*b*. The size of the shift is ex-
pected to be proportional to the soliton’s amplitude. Indeed,
for k0

�1�=2.7 and k0
�2�=1.6, the TL-soliton solution �4� yields

the amplitude ratio 2 ln�cosh�k0
�1� /k0

�2����2.13, which is con-
sistent with Fig. 5�b�.

A straightforward extension of the soliton-defect collision
is passage of a soliton through a periodic array of defects,
which was simulated with the periodic boundary conditions
and a single defect placed at n=0. The plots displayed in Fig.
6 demonstrate that the soliton’s amplitude is reduced after
each collision, unless the defect’s parameters belong to
“transparency” set �a* ,b*�, as defined above. If the param-

eters belong to this set, the soliton travels across the array of
defects indefinitely long without any conspicuous loss.

III. CONCLUSIONS

In the Toda lattice with a local defect represented by
modified values of the nonlinear-spring constants, we have
identified a parameter subspace in which the generation of
the defect mode due to the collision of the incident soliton is
strongly suppressed. A simple explanation to this fact was
given, as a relation between parameters at which the defect
mode vanishes in the linear limit. In this “transparency” sub-
space, the amplitude of the soliton traveling through an array
of defects remains virtually constant; otherwise, it decays
due to collision-induced losses. We expect that a similar ef-
fect may be observed in nonintegrable lattice models where,
strictly speaking, traveling solitons do not exist, but may
persist on a long time scale, which makes the consideration
of soliton-defect collisions a relevant issue.
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FIG. 6. The motion of a soliton in the ring lattice with 200 sites
and the defect set at n=0, for a*=2.0, k0=2.7, and b*=0.5 �a� or
b*=0.833 �b�. In the latter case, the parameters belong to the set
which provides for the suppression of inelastic effects in the colli-
sion of the soliton with the individual defect, as per Fig. 5.
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